Modulatory potential of *Tamarindus indica* seed coat on oestrogen and progesterone secretion in MCF-7 cell lines

A Sandesh Krishna, Bimitha Benny, Sujith Samraj, Preethy John, Uma Radhakrishnan

ABSTRACT

According to epidemiological research, the consumption of phytoestrogen rich foods has been shown to reduce the development of hormone dependent breast cancer. Phytoestrogens improved the efficacy of ongoing chemotherapy. Recent research indicates that polyphenols found in the tamarind seed coat have anti-inflammatory hepatoprotective antibacterial and antioxidant activities. The current study was undertaken to evaluate the modulatory potential of methanolic extract of seed coat of *T. indica* on oestrogen and progesterone production in (MCF-7), cancer cell line *T. indica* seeds were procured locally shade dried and the seed coat was removed and extracted with methanol followed by concentration of the extract using a rotary vacuum evaporator. The qualitative phytochemical analysis of seed coat extract was performed. The cytoxicity of *T. indica* seed coat was assessed in (MCF-7), cells using (MTT), assay and the (IC50), was determined. The presence of alkaloids flavonoids steroids phenolic compounds diterpenes saponins glycosides and tannins were discovered by qualitative phytochemical analysis. *T. indica* seed coat decreased cell viability in a dose dependent manner with an (IC50), value of (16ug/mL). There was dose dependent decrease in oestrogen concentration, whereas the progesterone concentration was found to be increased after 96hrs of treatment with the extract. From the study it could be concluded that methanolic extract of *T. indica* showed cytoxicity in vitro against (MCF-7), cell lines and it positively modulated progesterone secretion and negatively modulated oestrogen concentration in a time dependent fashion in (MCF-7), cell lines. Present in vitro study shows that methanolic extract seed coat of *T. indica* may have promising role in breast cancer prevention hence it can be used to develop novel compounds against hormone dependent breast cancer.

Keywords: *Tamarindus Indica*, Phytoestrogens, Breast Cancer, Oestrogen, Progesterone.

INTRODUCTION

The steroid hormones oestrogen and progesterone have important role in proliferation actiology and treatment of breast cancer. In the early stages of breast cancer treatment oophorectomy was used as an effective treatment as three quarter of all breast cancers are dependent on steroid hormone for their differentiation and development. Extended exposure to steroid hormones due to late menopause usage of oral contraceptives and obesity has transiently increased the risk of causing breast cancer. Thus, researchers are targeting the oestrogen (ER), and progesterone (PR), receptors and their selective modulation as an effective method for breast cancer treatment [1].

Phytochemicals have been known for their role in preventing cancer even back in ancient times through Ayurveda. The modern cancer treatment is very expensive and have many side effects. Phytoestrogens are plant derived compounds which possessed a phenolic ring and capable of binding to oestrogen receptor. They usually generate weak oestrogenic or anti-oestrogenic activity in mammals by affecting the expression of oestrogen genes as they are structurally similar to mammalian (17β), estradiol. The most well-known phytoestrogens are isoflavones and flavones and are capable of binding to both (Era), and (Erf), receptors whose subsequent activation or repression of their transcriptional pathways [2]. The phytochemicals present in plants are also capable of inducing antioxidants effects. Epidemiological studies imply that consuming a phytoestrogen-rich diet as found in traditional Asian countries is connected with a decreased risk of breast and prostate cancer as well as cardiovascular disease.

Tamarindus indica belongs to the family Fabaceae the fruit pulp of which are consumed widely and used in traditional medicines as laxatives treatment of wounds diarrhea fever and malaria [3]. However limited studies have been conducted to find the modulatory potential of seed coat of *T. indica* on steroid hormone synthesis. The current study was conducted for the assessment of modulatory effect of *T. indica* seed coat extract on oestrogen and progesterone secretion in (MCF-7), cells.

Correspondence:

Dr. Sujith Samraj
Assistant Professor, Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy-680651, Kerala, India
Email: sujith@kvau.ac.in
MATERIALS AND METHODS

Plant Extraction- Methanolic extract of seed coat of Tamarindus indica (MTI)

Tamarindus indica seeds were obtained locally from Mannuthy validated by a botanist at St Thomas College in Thrissur The seed coat was removed and used for the study The seed coat was finely crushed using an electric pulveriser and extracted with methanol using a Soxhlet extraction apparatus The methanol extract was then dried using a rotating vacuum evaporator at 40°C and stored under refrigerator till use.

Phytochemical analysis

The qualitative phytochemical analysis was performed according to Harborne (1998) [4].

Cell lines

The (MCF-7), an adherent human breast adenocarcinoma cell line obtained from the National Centre for Cell Sciences in Pune was used for in vitro investigations Cells were adapted to grow in Rosewell Park Memorial Institute (RPMI), -1640 media supplemented with 10 per cent charcoal stripped foetal bovine serum and 1 per cent gentamicin (50mg/mL), 2 per cent charcoal stripped foetal bovine serum and 1 per cent per cent charcoal stripped foetal bovine serum and 1 per cent gentamicin (50mg/mL). The cells were maintained in a humidified incubator at 37°C with five per cent carbon dioxide (CO2).

Cytotoxicity studies: 3-(4,5- dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay

In-vitro cytotoxic potential of the extract of T. indica was assessed in (MCF-7), using (MTT), reduction assay as per Rises et al., (2004) [5]. The extract was diluted to (320), (160), (80), (40), (20), and (10µg/mL), and used for the study 96 well plates were seeded with (1x10^5 cells/mL), and was allowed to proliferate for 24 hours Then the extract at the desired concentrations was added to the cells again incubated for 24 hrs Then (MTT), was added to each well at (10µL), incubated for 4 hours with serum free media The reaction was stopped by adding (100µL), of (DMSO), and the absorbance was read at (570nm), in a Varioskan (ELISA), Plate reader.

The per cent cell viability and per cent cell inhibition were calculated using the following formulæ:

Per cent cell viability = (Average absorbance of treated cells /Average absorbance of untreated cells) × 100

Per cent cell inhibition = 100 - per cent cell viability

The net absorbance from the control wells was taken as 100 per cent viable the (IC50), values of extracts were calculated by plotting the concentration against per cent cell inhibition using (AAT), Bio quest.

Culture of cells for steroid analysis

(MCF-7), cells were cultured as described in (RPMI-1640), media supplemented with Charcoal stripped (FBS), for studies involving modulation of steroidogenic activity The cells at a concentration of (3x10^5 cells/mL), of media was plated into six well plates and incubated at 37°C for 24 hours Once the cells reached confluency they were treated with the extracts of the plant.

Assay for hormones

The (MCF-7), cells were exposed to extracts of T. indica in the concentrations (380), (190), and (95µg), twice (IC50), (IC50), and half dose of (IC50), for 96 hours The culture media were collected every 48 and 96 hours and replaced with fresh media The assay was done in duplicates the collected media was stored at -80°C and used for the estimation of Progesterone and oestrogen The total progesterone level in the cell culture media was estimated using Progesterone (ELISA), kit provided by Above Corporation USA The absorbance was measured using microplate reader (Varioskan Flash, Thermistor Scientific, Finland), at a wavelength of (450nm), The mean absorbance values were calculated Standard curve was obtained by plotting mean absorbance of each standard on Y- axis and the concentration on X-axis Online curve fitting software (AAT), Bio quest was used for plotting the 4 Parameter logistic Curve for (ELISA), and the regression equation was derived The mean absorbance values of each media were used to determine the corresponding concentration of progesterone from the standard curve.

The total oestrogen level in the cell culture media was estimated using Enzyme-Immunooassay kit provided by Omega diagnostics as per Ratcliffe et al. (1988) [6]. The absorbance was measured using microplate reader (Varioskan Flash, Thermistor Scientific, Finland), at a wavelength of (450nm), The mean absorbance values of standard and samples were calculated the standard curve was plotted using the mean absorbance of each standard on Y-axis and the concentration on X-axis Online curve fitting software (AAT), Bio guest was used for plotting the 4 Parameter logistic Curve for (ELISA), and the regression equation was derived.

Statistical Analysis

The results were analysed using repeated measures (ANOVA), using (SPSSV), 24 and post hoc analysis was done by Latin Square Design Data on cell viability was analysed using student ‘t’ test.

RESULTS

Phytochemical analysis of methanolic extract of seed coat of Tamarindus indica (MTI)

The phytochemical analysis of (MTI), revealed the presence of steroids glycosides phenolic compounds tannins flavonoids alkaloids and saponins (Table 1).

Table 1: phytochemical present in (MTI)

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Type of test</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Dandruff’s Test</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>Salkowski’s Test</td>
<td>+</td>
</tr>
<tr>
<td>Phenolic compounds</td>
<td>Ferric chloride test</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Ferric chloride test</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Sodium hydroxide test</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>Foam test</td>
<td>+</td>
</tr>
<tr>
<td>Diterpenes</td>
<td>Ferric chloride test</td>
<td>+</td>
</tr>
</tbody>
</table>

Cytotoxicity studies of methanic extracts of seed coat of T. indica

When the cells were treated with the extract for 24 hours there was a dose dependent inhibition of cell proliferation with maximum inhibition when cells were exposed to (320µg/mL), with values of (80.85), (0.03), percent (Table 2), depicted percent inhibition of (Mcf-7), cells treated with (MTI), and (Fig 1), represented per cent cell viability of cells after treatment with (MTI), The percent cell inhibition obtained from (MTT), assay were used to find the (IC50), of (MTI), A curve was plotted using the values in (ATT), Bioquest.com and the graph obtained is represented in the (fig 2), The (IC50), value was identified to be (16µg/mL).
Table 2: Per cent inhibition of cells exposed to (MTI), presented as (Mean±SE), with (n=3), replicates

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>Percent inhibition (Mean±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>80.85±0.03</td>
</tr>
<tr>
<td>160</td>
<td>78.08±0.07</td>
</tr>
<tr>
<td>80</td>
<td>79.40±0.00</td>
</tr>
<tr>
<td>40</td>
<td>75.06±0.00</td>
</tr>
<tr>
<td>20</td>
<td>61.76±0.06</td>
</tr>
<tr>
<td>10</td>
<td>43.20±0.03</td>
</tr>
<tr>
<td>IC₅₀(µg/mL)</td>
<td>16</td>
</tr>
</tbody>
</table>

Effect of methanolic extract of seed coat T. indica on Oestrogen concentration (of MCF-7)

When the cells were treated with (MTI), at concentration (32µg/mL), the oestrogen concentration after 48 hours was found to be (1.32), (0.26ng/mL). At the doses of 16 and (8µg/mL), the oestrogen concentrations were found to be (1.14), (0.01), and (1.04), (0.01 ng/mL), respectively. After 96 hours the oestrogen concentration was observed to be (0.41), (0.18), (1.55), (0.00), (1.35), (0.00ng/mL), at the doses of (32), (16), and (8µg/mL), respectively and the concentration of control cells at 48 and 96 h were (1.56), (2.99), and (1.76), (0.00ng/mL), respectively. There was a dose dependent decline in the concentration of oestrogen after treatment with (MTI), compared to the control cells. Figure 3 showed the graph of oestrogen levels.

Effect of methanolic extract of seed coat T. indica on progesterone concentration (of MCF-7)

After 48hrs of treatment with (MTI), at concentrations (IC₅₀), half and twice (IC₅₀), the concentration of progesterone was found to be (2.79), (0.72), (3.63), (0.23), and (3.17), (0.01ng/mL), respectively. At 96 hrs the concentrations were found to be (4.08), (0.28), (4.81), (0.08), and (4.53), (0.48ng/mL), respectively. When compared to the control cells there was a significant increase in progesterone concentration in half (IC₅₀), concentration (P<0.05), after 48 hrs treatment and the increase was more profound after 96 hrs of treatment with the extract at all the doses (Figure 4), showed the graph of progesterone levels.

DISCUSSION

Oestrogen and progesterone are steroid hormones having major roles in the regulation of differentiation, growth and maintenance of female reproductive tissues. Cholesterol is the precursor of all steroid hormones, which is first converted to progesterone then testosterone and finally oestrogen [7]. Oestrogen deficiency causes infertility, atrophy poor healing and postmenopausal symptoms. Two third of the breast cancer are positive for oestrogen and progesterone receptors (ER and PR), and these can be treated through hormone therapy by decreasing the steroid hormone concentration or by blocking their receptors. Phytoestrogens are plant derived compounds which are structurally similar to oestrogen. Phytoestrogens are capable of binding to oestrogen receptors (ERs), and show affinity towards ERß which can inhibit the transcription and growth-promoting activity of (Era), Bilal et al. (2014) [9]. The qualitative phytochemical analysis of seed coat of T.indica showed the presence of glycoside diterpenes phenolic steroids tannins flavonoids and saponins. Which can be the reason for the steroidogenic modulatory potential of (MTI). The (IC₅₀), limit for selecting plant extracts for anticancer investigations according to (NCI), recommendations is fewer than (30µg/mL) [9]. In the current study the (IC₅₀) of methanolic extract of the seed coat of T. indica was found to be (16µg/mL), (MTI), ca be used as potent anticancer compound. The high cytotoxicity and antiproliferative property of the extract can be due to the presence of terpenes [10].

The cells after treatment with T. indica at concentration (32), (16 and 8µg/mL), L for 48hrs indicated a decrease in the oestrogen concentration when compared to the control wells furthermore T. indica also prevented the proliferation of (MCF-7), cells confirming antiestrogenic role of T. indica in oestrogen production. The decreased concentration of oestrogen might be caused by the action of phytoestrogens present in the extract. Previous studies reported that phytoestrogens (ligans, isoflavones, stilbenes), inhibited (Era), and (Erfß), expression in breast cancer cell line and also found inhibitory effect on oestrogen metabolizing enzymes and a concomitant decrease in oestrogen concentration which is in line with the current study [11].
An increase in progesterone concentration was seen at all doses of *T. indica* after 96 hrs of treatment. The increase in progesterone concentration can be an indication that progesterone was not utilized for the synthesis of oestrogen. Methanolic extract of *Boer avia diffusa* in human breast cancer cell line showed an increase in progesterone concentration after 48hrs of treatment with the extract [12].

CONCLUSION

From the results of the present study, it could be inferred that the methanolic extract of *T. indica* seed coat had cytotoxic potential and the extract also possess antiestrogenic activity with a positive modulation progesterone. Since most of the oestrogen dependent tumours can be treated with progesterone this extract is having a double advantage that it decreased oestrogen synthesis and upregulated progesterone secretion. Hence further studies may be undertaken to isolate and characterise the active compound in the extract.

Acknowledgements

The authors are thankful to the College of Veterinary and Animal Sciences Mannuthy under Kerala Veterinary and Animal Sciences University for providing the facilities financial assistance provided.

Conflict of Interest

None declared.

Financial Support

None declared.

REFERENCES

13. www.mycurvefit.com

HOW TO CITE THIS ARTICLE

Creative Commons (CC) License

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).