Protective effects of alkaloids of *Cucumis metuliferus* isolated from the fruit pulp on some vital organs

A.A. Anyanwu, N.S. Jimam*, D. A. Dangiwa, N.N. Wannang, K. D. Falang

Abstract

The protective effects of the alkaloids of *Cucumis metuliferus* fruit pulp on carbon tetrachloride-induced hepatotoxicity and gentamicin induced nephrotoxicity in adult albino rats were investigated. The result showed a significant (P<0.05) decrease in the levels of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) in CCL₄ induced hepatotoxicity in rats. There was a significant (P<0.05) increase in the levels of the electrolytes (Na⁺, K⁺) which were dose dependent in gentamicin induced nephrotoxic rats compared to the controls. The dose dependent decrease in the level of urea was statistically significant (P<0.05), and there was a significant decrease in the levels of creatinine when 200 mg/kg of the alkaloid was administered to the rats alone. This result showed that alkaloids of *C. metuliferus* have protective effects on both the liver and kidney tissues.

Keywords: Alkaloids, *C. metuliferus*, Liver, kidney, Cabon tetrachloride, Gentamicin.

Introduction

Cucumis metuliferus E Meye belongs to the gourd family Curcubitaceae, which includes hundreds of vines bearing coiled, climbing tendrils. It is monocious, annual herb with staminate flowers, it flowers and fruits from July to September and the fruits ripened from October to December. The fruits have spiny thorns and are ovoid in shape, about 8-10cm long and 4-5cm in diameter, reddish-orange or yellow at maturity. The emerald green seeds are embedded in the mesocarp. Phytochemical investigation of *C. metuliferus* fruit extract reveals presence of alkaloids, flavonoids, and cardiac glycosides in high concentration.

The medicinal properties of *C. metuliferus* fruits have been widely reported; in plateau state of Nigeria, it is generally believed that the fruit pulp is a remedy to all diseases, hence its local name “kanda” or ‘a local vaccine’. Alkaloids are a group of naturally occurring chemical compounds that contain basic nitrogen atoms, with a wide range of pharmacological activities. The presence of various phytochemicals in a plant account for the diverse medicinal activities of that plant, hence the need to focus on the pharmacological activities of the phytochemicals present in this plant. This study aimed at investigating the protective effects of the alkaloids of *C. metuliferus* fruit pulp on the liver and kidney tissues integrity of albino rats.
Materials and Methods

Plant collection and authentication

The ripe fruit of *C. metuliferus* were harvested from Chong’Openg village of Jos south Local Government Area of Plateau State, Nigeria. The plant was identified by Professor C. O. Akueshi of the department of plant science of the University of Jos, Nigeria; further authentication was done by matching features and description obtained from the internet with those of the sample obtained.

Preparation of *C. metuliferus*

The mesocarp content of the ripened fruit of *C. metuliferus* was carefully scooped out from the pericarp with the aid of a spatula. The fleshy content was blended using electric blender and the fluid product of blending was passed through a sieve size of 0.25mm to separate the seeds from the juicy contents. The smooth filtrate was evenly spread on an aluminium tray and dries in a drying cabinet, at about 55 °C until the liquid content had been evaporated. The resultant product was air dried for several hours and then pounded to powder using mortar and pestle and appropriately stored in an air-tight container.

Extraction of Alkaloids of the *C. metuliferus* Fruit Pulp

The alkaloids from *C. metuliferus* fruit pulp were isolated according to the method described by Agrawal and Paridhavi.[10] The pure alkaloid was stored in an air-tight container at room temperature prior to use.

Test Animals

Adult albino rats (wistar strain) bred in the animal house of the University of Jos, Nigeria, were used in the study. Proper handling and using of the animals were in accordance with the guidelines regulations, monitored and approved by the ethical committee on Animal use of the department of Pharmacology, University of Jos, Nigeria.

Effect of Alkaloids of *C. metuliferus* on Gentamicin-Induced Nephrototoxicity

Thirty animals were randomly divided into six groups of five animals each. The method according to Mitchell and Kline[12] was adopted and used in this study. The daily urine volumes of the animals were noted, the electrolyte contents of the urine were also analysed. Serum urea and creatinine tests were carried out on the blood sample of the rats which was collected by cardiac puncture at the end of the administrations.

Statistical Analysis

All results were expressed in mean±SEM, and the data were analysed statistically using two way ANOVA and student’s t-test and values of *P*<0.05 were considered significant.

Results and Discussion

Liver injury induced by CCL₄ is a common model for screening the hepatoprotective activity of drugs and it’s used has been reported since 1936.[13]

The chemical is a potent hepatotoxin and is metabolized by cytochrome P-450 in the endoplasmic reticulum and mitochondria with the formation of CCl₃O⁻ which is a
reactive oxidative free radical, which initiates lipid peroxidation.14

A single exposure can rapidly lead to severe hepatic necrosis and steatosis.15 When the cell membrane of hepatocytes is damaged, a variety of enzymes, such as SGOT, SGPT, ALP normally located in the cytosol, are released into the blood 16 and these authors further emphasized the widely used of serum transaminase activity as an index of hepatic damage.

This study showed that alkaloid of \textit{C. metuliferus} fruit have hepatoprotective activity; due to the fact that the parameters used in the study were low, indicating decreased in toxicity in the study groups pretreated with 50 mg/kg and 100 mg/kg \textit{C. metuliferus} compare to the control. The decrease in the levels of ALP in the group pretreated with 50, 100 and 200 mg/kg alkaloid of \textit{C. metuliferus} were statistically significant ($P<0.05$) while those of ALT and AST were only statistically significant in groups pretreated with 200 mg/kg alkaloids (Table 1). The observed dose-dependent decrease in the levels of enzymes concentrations is suggestive of the hepatoprotective effect of the administered alkaloids in the animals as reported by Abdullah and Al-Assaf.14

Table 2 showed a significant ($P<0.05$) increase in the Na*, K* and Cl* ion concentrations in the urine of the rats treated with gentamicin 100 mg/kg plus 50, 100, 200 mg/kg of the alkaloids, suggesting the protective effect of the administered extract; this is similar to previous Studies that have shown nephroprotective effect of herbs on Carbon tetrachloride renal injured rats.17, 18 Table 3 showed the Urea, Creatinine and Creatinine clearance level in albino rats.

Table 1: Effect of isolated alkaloids of \textit{C. metuliferus} on CCL\textsubscript{4} induced Hepatotoxicity in albino rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total acid (mg/kg)</th>
<th>Total protein (g/L)</th>
<th>Albumin (g/L)</th>
<th>ALP (u/L)</th>
<th>ALT (u/L)</th>
<th>AST (u/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL\textsubscript{4}</td>
<td>78.00±0.00</td>
<td>45.00±0.00</td>
<td>276.00±34.00</td>
<td>33.00±6.00</td>
<td>31.00±0.00</td>
<td>10.00±0.00</td>
</tr>
<tr>
<td>CCL\textsubscript{4} + Phosphatylcholine</td>
<td>74.00±2.00</td>
<td>45.00±3.00</td>
<td>455.50±16.50</td>
<td>56.50±1.50</td>
<td>64.20±2.00</td>
<td>18.50±1.50</td>
</tr>
<tr>
<td>CCL\textsubscript{4} + 50 alkaloids</td>
<td>71.50±4.50*</td>
<td>36.50±9.00*</td>
<td>261.00±25.00</td>
<td>38.00±9.00</td>
<td>46.50±4.50</td>
<td>23.50±2.50</td>
</tr>
<tr>
<td>CCL\textsubscript{4} + 100 alkaloids</td>
<td>68.50±4.50</td>
<td>39.00±5.50</td>
<td>378.50±58.50</td>
<td>27.00±7.00</td>
<td>22.50±4.50</td>
<td>15.50±2.50</td>
</tr>
<tr>
<td>CCL\textsubscript{4} + 200 alkaloids</td>
<td>68.50±4.50</td>
<td>45.00±3.00</td>
<td>174.50±43.50</td>
<td>26.00±5.00</td>
<td>8.00±0.50</td>
<td>6.00±0.50</td>
</tr>
</tbody>
</table>

n = 5, *P<0.05

Table 2: Effect of \textit{C. metuliferus} alkaloid extract on electrolyte excretion on Gentamicin induced Nephrotoxicity in albino rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Na* (mmol/L)</th>
<th>K* (mmol/L)</th>
<th>CL- (mmol/L)</th>
<th>HCO\textsubscript{3} - (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal saline</td>
<td>87.00±7.00</td>
<td>77.50±22.00</td>
<td>185.00±15.00</td>
<td>17.50±2.50</td>
</tr>
<tr>
<td>Gent 100</td>
<td>145.00±8.00</td>
<td>42.50±7.00</td>
<td>111.50±16.50</td>
<td>14.00±1.50</td>
</tr>
<tr>
<td>Gent 100 + alkaloid 50</td>
<td>201.50±1.50*</td>
<td>100.50±6.20*</td>
<td>190.00±25.00</td>
<td>20.00±2.00</td>
</tr>
<tr>
<td>Gent 100 + alkaloids 100</td>
<td>192.10±4.00</td>
<td>102.00±1.00</td>
<td>210.00±8.60</td>
<td>16.50±4.00</td>
</tr>
<tr>
<td>Gent 100+ alkaloids 200</td>
<td>195.50±5.50*</td>
<td>97.50±12.50</td>
<td>156.50±23.50</td>
<td>15.00±5.00</td>
</tr>
<tr>
<td>Alkaloids 200 alone</td>
<td>230.50±6.00*</td>
<td>110.00±3.00</td>
<td>243.50±6.50</td>
<td>24.50±0.50</td>
</tr>
</tbody>
</table>

n = 5, *P<0.05, Na* = sodium ion, K* = potassium ion, CL- = chloride ion, HCO\textsubscript{3} - = bicarbonate ion
Table 3: Effect of alkaloids of *C. metuliferus* fruit on Gentamicin induced Nephrotoxicity in albino rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Urea (mg/kg)</th>
<th>Creatinine (mmol/L)</th>
<th>Creatinine clearance (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>8.04±1.08</td>
<td>84.80±7.70</td>
<td>0.36±0.24</td>
</tr>
<tr>
<td>Gent 100</td>
<td>4.42±2.40</td>
<td>96.80±6.18</td>
<td>0.11±0.03</td>
</tr>
<tr>
<td>Gent 100 + alkaloid 50</td>
<td>6.74±1.06*</td>
<td>99.80±11.39</td>
<td>0.19±0.03</td>
</tr>
<tr>
<td>Gent 100 + alkaloids 100</td>
<td>7.32±0.89*</td>
<td>102.76±8.89</td>
<td>0.24±0.01</td>
</tr>
<tr>
<td>Gent 100+ alkaloids 200</td>
<td>7.68±0.46*</td>
<td>91.50±8.22</td>
<td>0.12±0.04</td>
</tr>
<tr>
<td>Alkaloids 200 alone</td>
<td>6.18±0.74*</td>
<td>69.20±3.56</td>
<td>0.12±0.01</td>
</tr>
</tbody>
</table>

n = 5, *P<0.05

Tubular damage and tubular dysfunction are the main cause of renal insufficiency observed in nephrotoxicity of gentamicin which reduced glomerular filtration rate.\(^{19}\) Studies have also shown that an increase or decrease in the values of Creatinine, urea, uric acid and electrolytes is often indicative of kidney dysfunction,\(^{20}\) hence the usefulness of these parameters as routine diagnostic markers for renal function.

Conclusion

The present study showed that pretreatment with the alkaloid of *C. metuliferus* fruit suppressed CCl\(_4\) and gentamicin-induced hepatic and nephrotic injury.

Acknowledgements

The authors wish to appreciate all the staff of Animal House, University of Jos for the assistance rendered throughout the study.

Reference

