Enumerations on phytochemical, pharmacological and ethnobotanical properties of Cassia fistula Linn: yellow shower

Dilip Kumar Sharma

ABSTRACT

Indian Laburnum or Yellow shower (Cassia fistula Linn.) of Fabaceae (caesalpiniaceae) is a semi-wild deciduous and ornamental tree with long and cylindrical fruits. It is a native of tropical Asia widely cultivated in South Africa, Mexico, East Africa and Brazil. Its species are native to the Indian subcontinent and adjacent regions of Southeast Asia. It is suppose to closely associate with the Mullai (forest) region of Sangam landscape. It ranges from southern Pakistan eastward throughout India to Myanmar, Thailand and south Sri Lanka. The plant parts have medicinal uses and important for antimicrobial, anthelmintic and phytochemical aspects for its pod, leaves bark and seed extracts. Pharmacologically it is hypoglycaemic, anticancer, abortifacient, anticolic, antifertility, estrogenic, laxative, antimicrobial, anti-inflammatory, smooth muscle stimulant, anti-arthritic, antithusive, purgative, analgesic, anti-viral, antimicrobial and hepatoprotective activity. It is known as rich source of tannins, flavonoids and glycosides. It is also used to cure burns, constipation, convulsions, diarrhoea, dysuria and epilepsy. Ayurvedic medicines recognize it as carminative, laxative and to cure leprosy, skin diseases and syphilis. This article provides a comprehensive review on plant profile, morphology, traditional or ethnobotanical uses, phytochemical constituents and pharmacological activities of plant.

Keywords: Cassia fistula Linn. ayurvedic medicines, secondary metabolites, phenolic compounds, pharmacological activities, phytochemical profile, ethnobotanical uses.

INTRODUCTION

India is one of the richest countries in the world in regard to genetic resources of medicinal plants since Ayurveda or Siddha systems. These medicinal plants contain several chemical active substances that produce a definite physiological action on the human or animal body. In ayurvedic medicine, the golden shower tree is known as aragvadha, meaning disease killer. Its species are native to the Indian subcontinent and adjacent regions of Southeast Asia, South Africa, Mexico, East Africa and Brazil. It is the national tree of Thailand and its flowers is Thailand national flower. In India, it is the also state flower of Kerala and of immense importance amongst the Malayali population.

The plant is widely planted as tree and has a number of common names in various languages from its native range surrounding regions such as [1] in English (golden shower cassia, Indian laburnum, golden shower, pudding pipe tree, purging cassia, purging fistula), Cantonese (kakke); French (Bâton casse, casse doux, casse espagnole); Spanish (Canafístula mansa, chácara, Guayaba cimarrona), Greek (kassia-the generic name), Arabic (khīr shambar), Assamese (xonaru), Bengali (sonalu, soondali, sonal, sonal, bandarlathi, amaltas), Burmese (ngu wah), Chinese /Taiwan (sausage tree), Gujarati (garmalo), Hindi (amaltas, bendra lathi, bandarlauri), dhanbaher (dhanbohar, girimaloh), Hindi (bandarlathi, bharva, suvarnaka, amaltas, rajtaru, girimalah), Japanese (nanban saikachi, Kanji), Khmer (reachapreuk), Kannada (kakke, Kakkemara), Lao (khoun), Marathi (bahava), Malayalam (kanikkonna, kani konna, vishu konna, ophirponnu, karnikaram, konnappo), Meitei/ Manipuri (chahu), Nepali (amaltash, rajbrikshya), Oriya (sunari), Sanskrit (aragvadh, chaturangula, kritamala, suvarnaka, nripadruma), Sanskrit (saraphala, survanaka, argwadha, rajtara), Sinhalese (aehauela, or ahalla, ehela), Thai (rachapruet, khun, dok kheu), Tamil (shakkonah, konai, irjvirutam), Telugu (raela, kondrakayi, raehchettu, aragvadhama, koelpenna), Punjabi (amaltaas, kaniyaar, girdnalee) and Urdu (amaltaas) [2, 3].
Biochemical Constituents

The plant is widely used in traditional Indian medicinal system reported to possess hepatoprotective, anti-inflammatory, antitussive, antifungal, antibacterial and to improve wounds healing. It is a rich source of tannins, flavonoids and glycosides, carbohydrates, linoleic, oleic, stearic, oxalic acids, tannins, oxythraquinones, anthraquinones derivatives. *Cassia fistula* contains rhein glycosides fistulic acids, sennosides A, B, anthraquinones, flavanoid-3-ol-derivatives, ceryl alcohol, kaempferol, biaanthraquinone glycosides, fistulin, essential oils, volatile components, phytol (16.1%), 2-hexadecanone (12%), crystals and 4-hydroxy benzoic acids hydrate [15, 6, 7, 8].

The seeds contain 24% crude protein, 4% crude fat, 7% crude fiber, and 50% carbohydrates with an 81% in vitro digestibility. The leaves contain 16% crude protein, 40% carbohydrates with an 88% in vitro digestibility. FAO reports the leaves to contain, on a zero moisture basis, 17.6 g protein, 66.8 g total carbohydrate, 30.2 g fiber, 7.8 g ash, 3 270 mg Ca, and 330 mg P per 100 g. Flowers contain ceryl alcohol, kaempferol, rhein and a biaanthraquinone glycoside, which on hydrolysis, yields fistulin and rhamnose. Leaves contain their full length by October and they ripen during December to July in India. The long cylindrical pods develop rapidly and contain several (40-100) horizontal seeds with mean annual rainfall 480-720 mm and pH 5.5-8.7. It grows properly by means of annual temperature of 18-29°C with mean annual rainfall 480-720 mm and pH 5.5-8.7.

Taxonomic Position [24]

Kingdom : Plantae
Subkingdom : Tracheobionta
Super Division : Spermatophyta
Division : Magnoliophyta
Class : Magnoliopsida
Sub Class : Rosidae
Order : Fabales
Family : Fabaceae
Genus : Cassia
Species : fistula

Medicinal and Ethnobotany uses

It is a popular ornamental plant widely used in herbal medicine. The fruit helps greatly in soothing senses in many ways. The fruit and seed pulp and root have immense medicinal value. It is prescribed as emetics, purgatives, febrifuges and relievers of thoracic congestion. It used in reliving asthma, leprosy, ringworm, fever and heart related diseases.

In Ayurvedic medicine system, seed used as antibilious, aperitif, carminative and laxative, root for adenopathy, burning sensations, leprosy, skin diseases, syphilis, and tubercular glands, leaves for erysipelas, malaria, rheumatism and ulcers, the buds for biliiousness, constipation, fever, leprosy and skin disease, the fruit for abdominal pain, constipation, fever, heart disease and leprosy. In Unani system, leaves used for inflammation, flowers as purgative, the fruit as anti-inflammatory, antipyretic, abortifacient, demulcent, purgative, refrigerant, good for chest complaints, eye ailments, flu, heart and liver ailments, and rheumatism, though suspected of inducing asthma [8, 25-27].

The entire plant or plant parts are used by several ethnic groups for their tradition, rituals and to cure several diseases from their inherent knowledge. Plant has bright yellow flowers in spring and summer in northern India. The flowers used in decorating hair specialty in Bihar, Gujrat and several other states. As per Gujri folk songs Rama fell in love with Sita mainly due to the beautiful floral decoration of her hair.

In rituals of tribes the flowers are important in the Vishu festival of Kerala and the tree depicted in a 20-rupees stamp. The golden shower tree is the national flower of Thailand; its yellow flowers symbolize Thai royalty. The tree of *Cassia fistula* has strong and very durable wood, and has been used to construct "Ahala Kanuwa", a place at Adams Peak, Sri Lanka as ahala, ehela, or ahaela, in Sinhala [16, 25, 26] heartwood. A 2006-2007 flower festival, the Royal Flora Ratchaphruek, was named after the tree, which is known in Thai as Ratchaphruen and the blossoms known as dok khuen.
The flowers are consumed by Santal people of India. It is used in
apiculture by several ethnic groups. The plant has been considered as
a fuelwood in Mexico. It has reddish wood, hard and heavy, durable,
suited for cabinetwork, farm implements, inlay work, posts, wheels
and mortars. The bark of plant employed in tanning. The pulp of fruit
used as folk remedy for burns, cancer, constipation, convulsions,
delirium, diarrhoea, dysuria, epilepsy, gravel, hematuria, pimples and
glandular tumors in tribal communities. Zimbabweans use the pulp for
anthrax, blood poisoning, black water fever, dysentery and malaria.
Konkanese use the juice to alleviate ringworm and blisters caused by
the marking nut, a relative of poison ivy. Leaf poultices are applied to
the chilblains so common in the upper Sind; also used in facial
massage for brain afflictions, and applied externally for paralysis and
rheumatism and gout. In the West Indies, the pulp and/or leaves are
poulticed onto inflamed viscera, e.g. the livers similarly bark/leaves
for skin diseases. The flowers used for fever and root as diuretic,
febrifuge for gout and rheumatism. Ghana natives used fruit pulp as
purgative. In Far East, the uncooked pulp used as popular remedy for
constipation and decoction of the root bark for cleaning wounds [7, 22,
25-33].

Phytochemical Profile

Cassia fistula extracts attributed to their primary and secondary
metabolite composition. Primary metabolite analysis has essentially
been focussed on the seed, pollen, fruit, leaf and pod. Biochemical
analysis of pollen grains play a significant allergenic role showed a
protein composition of 12% with appreciable amounts of free amino
acids such as phenylalanine, methionine, glutamic acid and proline.
Carbohydrate, lipid and free amino acid contents were of the order of
11.75, 12 and 1.42% respectively [3, 5, 7, 34].

The edible fruit tissue is rich source of potassium, calcium, iron and
manganese. The protein (19.94%) and carbohydrate (26.30%) contents
are indicative of the potential of the fruit to be an important
source of nutrients and energy. A polar compounds including 5-
nonatetracontanone, 2- hentriacontanone, triacontan, 16-
hentriacontanol and sitosterol along with an oil (probably an
isoprenoid compound) showing antibacterial activity isolated from
the pods of C. fistula [6, 8, 35].

The plant organs are good source of secondary metabolites, notably
phenolic compounds. Fistucacidin is an optically inactive leucoanthyocyanidin (3,4,7,8,4′-pentahydroxyxflavan). The presence of
kaempferol and a proanthocyanidin whose structure has been
established as a leucopelargonidin tetramer having a free glycol in the
acetone extract of the flower has been documented. Proanthocyanidins
containing flavan-3-ol (epiafzelechin and epicatechin) units with an
abnormal 2S-configuration observed in pods together with the
common flavan-3-ols and proanthocyanidins like catechin, epicatechin,
procyanidin B-2 and epiafzelechin [10, 36].

The leaf oil composed only seven components identified as eugenol
(25.0%), (E)-phytol (21.5%), camphor (13.5%), limonene (11.0%),
salicil alcohol (10.4%), linalool (9.9%) and 4- hydroxybenzyl alcohol
(8.7%). Four new compounds as 5-(2-hydroxyphenoxymethyl)
furfural, (25)-7-hydroxy-5- hydroxymethyl-2-(2′-hydroxypropyl)
chromone, benzyl 2-hydroxy-3,6-dimethoxybenzoate, and benzyl 2β-
O-d-glucopyranosyl-3,6-dimethoxybenzoate, together with four
known compounds, 5-hydroxyethylfurfural, (25)-7-hydroxy-2-(2′-
hydroxypropyl)-5-methylchromone, and two oxyantraquinones,
chrysophanol and chrysophanein, isolated and identified from the
seeds. Twenty-seven compounds including eight long-chain
hydrocarbons, 1-hexacosanol, 1-octacosanol, palmitic acid, stearic
acid, oleic acid, linoleic acid, heptacosyl eicosanate, glyceryl-1-
tetraecicosanoate; three sterols, β-sitosterol [2], stigmasterol [8], β-
sitosteryl-3-O-D-glucopyranoside [39], one triterpene, lupeol [3], eight
anthraquinones, chrysophanol [19], emodin [20], physcion, cistusrosein
[1], rhein [1], rhein methyl ester [22], ziganeein [37], 1,4,5-
trihydroxyanthraquinone [22]; two coumarins, isosopcolentin [9],
scoptolentin [18]; two chromones, 2,5-dimethyl-7-hydroxchromone [40],
2,5-dimethyl-7-methoxychromone [40]; three aromatic compounds,
isovanillic acid [39], vanillic acid [2], and 2,4-dihydroxybenzaldehyde
[16] isolated and identified from the bark [10]. Cassia fistula
traditionally used by native populations of Tanzania, Zimbabwe,
Mozambique and Brazil to treat malaria or symptoms associated with
this disease. The plant drug used in the treatment of hepatitis as folk
medicine and water extract from the pods investigated for
antihelmintic activity [13, 12-15, 27, 28, 39, 40]. Different parameter after
1ppm, 5ppm and 10 ppm arsenic concentrations it is works as
phytoremediation of soils contaminated with heavy metals arsenic.
Extract of seeds of it to mated female rats from day 1-5 of pregnancy
at the doses of 100 and 200 mg/kg body weight resulted in 57.14% and
71.43% prevention of pregnancy, respectively, whereas 100% pregnancy
inhibition was noted at 500 mg/kg bw. The efficacy of a
bromobenzene-induced toxicity was studied. The stem bark
extracted with water extracts were vacuum dried to yield Aqueous
Extract (AQET). The extracts were evaluated for hepatoprotective
activity against Carbon tetrachloride (CCL) induced liver damage.
The biochemical parameters in serum were total bilirubin, alkaline
phosphatase (ALP), Serum glutamate oxaloacetate transaminase
(SGOT), Serum glutamate pyruvate transaminase (SGPT) levels and
total protein were observed. The extracts exhibited dose dependent
reduction in total bilirubin, ALP, SGOT, SGPT, AST, ALT and
increase in total protein (serum and liver) levels. It is reported that
Cassia fistula possessed the highest percent inhibition of DPPH
(91.66%) and amount of bioactive constituents comprising alkaloids,
flavonoids, saponins, tannins and total phenol content where
Cassia fistula was observed comparatively richer source of these
phytochemicals among all the Cassia species studies of secondary
metabolites using qualitative test analysis was done for various
phytoconstituents [41-47].

Pharmacological Activities

The investigation suggested the antioxidant properties at 90% ethanol
extracts of leaves, and 90% methanol extracts of stem bark, pulp
and flowers from Cassia fistula. The antioxidant activity power was in the
decreasing order of stem bark, leaves, flowers and pulp and was well
correlated with the total polyphenolic content of the extracts. The
reason for low antioxidant activity in the flower and pulp fractions
may due to some prooxidants, such as chrysophanol and reducing
sugars which dominate the antioxidant compounds present in the
extracts. Thus, the stem bark had more antioxidant activity in terms of
reducing power, inhibition of peroxidation, O2 and DPPH radical
scavenging ability [12-15, 42]. Aqueous extract of Cassia fistula flowers
(ACF) antioxidant effect in alloxan induced diabetic rats. An
appreciable decrease in peroxidation products viz thiorbarbituric acid
reactive substances, conjugated dienes, hydroperoxides was observed
in heart tissues of ACF treated diabetic rats. The reduction of primary
metabolites using qualitative test analysis was done for various
phytoconstituents [3].
The effects of methanolic extract (ME) of *Cassia fistula* seed on the growth of *Ehrlich* ascites carcinoma (EAC) and on the life span of tumour bearing mice were studied. ME treatment showed an increase of life span, and a decrease in the antitumor activity tumour volume and viable tumour cell count in the EAC tumour hosts. Cytological found reduction in the mitotic activity, and the appearance of membrane blebbing and intracytoplasmic vacuoles in the treated tumour cells. Improvement in the haematological parameters as like haemoglobin content, red blood cell count and bone marrow cell count of the tumour bearing mice have also been observed. The exact mechanism by which ME mediates its antitumor effect is still to be elucidated. Cytological changes indicate that ME might be having a direct tumoricidal effect on the tumour cells [56-60].

The petroleum ether extract of seeds screened for the antifertility activity in proven fertile female albino rats. Oral administration of the extract to mated female rats on days 1-5 of pregnancy resulted in a decline in the fertility index, numbers of uterine implants and live foetuses in a dose dependent manner as was confirmed by laparotomy on day 15 of pregnancy. The petroleum ether extract of seeds of *Cassia fistula* possesses pregnancy terminating effect by virtue of anti-implantation activity [58, 61-64].

The efficacy of concentrated boiled extract and hydroalcoholic extract of plant of *Cassia fistula* on leishmaniasis was compared with intralesional injection of Glucantime [meglumine antimonate]. The plant could be used topically along with Glucantime for decreasing the time and dose of treatment with Glucantime for disease. The potential of *Cassia fistula* boiled extract in the treatment of cutaneous leishmaniasis, to evaluate the efficacy of intralesional meglumine antimonate- *C. fistula* fruit gel combination for the treatment of cutaneous leishmaniasis. The fruit gel increases the efficacy of intralesional meglumine antimonate for the treatment of cutaneous leishmaniasis. Combination therapy (intralesional meglumine antimonate and *C. fistula* fruit gel) should be considered for the treatment of acute cutaneous leishmaniasis [33, 61, 65, 66].

Antioxidant potential of various extracts of *Cassia fistula* was determined by DPPH, FRAP, Fe^{3+}-reducing power, and hydrogen peroxide scavenging assay. The methanolic extract of its seed was investigated for potential antimicrobial activity against medicinally important bacteria [32, 58, 67].

The antibacterial and antifungal activities of hydroalcoholic and chloroform root extracts (5, 25, 50, 100, 250 μg/mL) were tested against two gram positive *Staphylococcus aureus*, *Streptococcus pyogenes*, two gram negative bacteria as *Escherichia coli*, *Pseudomonas aeruginosa* human pathogenic bacteria and three fungal strains *Aspergillus niger*, *Aspergillus clavis*, *Candida albicans* respectively [68]. It is reported that antioxidant activity of the 1 mg/mL of the crude solvent (methanol, ethyl acetate, chloroform and water) extracts of their flowers were evaluated in vitro by DPPH radical scavenging activity, reducing power and inhibition of lipid peroxidation against the standard (n-tocopherol), accompanied by phenolic and flavonoid content. Ethanol, methanol, chloroform and carbon tetrachloride, and hexane extracts from *Cassia fistula* were investigated that the ethyl acetate and ether extracts of dried flowers and pods investigated individually for in vitro antibacterial activity by well diffusion method against *Escherichia coli*, *Salmonella typhi*, *Shigella dysenteriae*, *Bacillus cereus* and *Pseudomonas aeruginosa*. Rhein inhibited the growth of many fungi such as *Trichophyton mentagrophytes*, *Trichophyton simii*, *Trichophyton rubrum* and *Epidermophyton floccosum* [14, 15, 47, 52, 60]. Bark extracts from three different age classes, showed total means of 16.67% TPC and 3.12% TTC. Different fraction of roots evaluated for antimicrobial activity against *P. vesicularis*, *Streptococcus faecalis*, *Aeromonas hydrophila*, *Salmonella typhae*, *Staphylococcus cohnii*, *Serratia ficaria* and *E.coli*. The extracts of *Cassia fistula* were tested in vitro against 4 bacterial species as *Staphylococcus aureus*, *Streptococcus epidermidis*, *Escherichia coli* and *Klebsiella pneumoniae*. Only methanolic extract exhibited fair antibacterial activity against the entire test bacteria whereas other extract were not observed to inhibit the growth of any of the test bacteria under study. Four Gram-positive and Five Gram-negative bacteria namely *Bacillus megaterium*, *Bacillus subtilis*, *Streptococcus β-haemolyticus*, *staphylococcus aureus*, *Salmonella typhi*, *Shigella dysenteriae*, *Shigella shiga*, *Escherichia coli* and
CONCLUSION

Medicinal herbs are moving from fringe to mainstream use of people seeking remedies free from side effects as compared to synthetic chemicals. In India Cassia fistula used in traditional, folk and herbal medicine. It is clear by review that in traditional medicinal system of India plant possesses hepatoprotective, anti-inflammatory, antitussive, antifungal, wounds healer and antibacterial properties. It found good source of tannins, flavanoids and glycosides, carbohydrates, linoleic, oleic, stearic, axical acids, tannins, oxanthraquinones, anthraquinones derivatives, rhein glycosides fistulic acids, sennosides a b, flavanoid-3-ol-derivatives, ceryl alcohol, kaempferol, bianthraquinone glycosides, fistulin, essential oils, volatile components, phytol (16.1%), 2-hexadecanone (12%), crystals, 4-hydroxy benzoic acids hydrate and several other secondary metabolites. This review summarizes on pharmacological, phytochemical and traditional investigations that can be investigated further to achieve lead molecules in the search of novel herbal drugs.

Acknowledgement

Authors are grateful to Prof. Ashok Sharma, hon’ble vice-chancellor, VMOU, Kota, Prof. Kailash Agrawal Head, Department of Botany, University of Rajasthan, Jaipur, faculty members of P.G. Department of Botany for valuable support and academic guidance. Thanks to Dr. Meena Jangid, Sh. Kailash Chaudhary and Sh. Mahesh Kumar for the valuable technical support in preparing this review article.

REFERENCES

The Journal of Phytopharmacology

Pseudomonas aeruginosa were practiced. The pods and leaves tested against infectious bovine rhinotracheitis (IBR) virus (herpes virus group). Maximum non toxic dose of both extracts using MDBK cell line was determined and found to be 5mg/ml crude extracts from leaves, bark and fruits were tested for their antiprolasmodial activity against the chloroquine-sensitive strain of Plasmodium falciparum (D10). Three main antiprasmodial principles, phytol, lutein [14] and dl-linoleylglyctopanrosyl-glycerol (DLGG) [49] were isolated and identified using spectroscopic methods [51, 66, 67, 70, 71, 72] reported two new 2'-ethyl-furanoflavones named fistulafalvanones A and B together with six known furanoflavones evaluated for their cytotoxicity against five human tumor cell lines. One of the compounds showed potent cytotoxicity against SHSY5Y and MCF7 cells with IC50 values of 2.7 and 2.6 µmol L-1, respectively.

Several modern biotechnological techniques were used as RAPD, ISSR and SSR primers were used to assess genetic diversity and phylogenetic relationships among 28 species of Cassia (2n = 16, 26, 28). RAPD, ISSR and SSR primers revealed 36.12, 42.7 and 54.4% polymorphism, respectively. Polymorphic index varied from 0.1 to 0.5 for both SSR and RAPD markers; primer index values were substantially higher for RAPD primers (0.35–4.65) than for SSR primers (0.35–1.73). C. fistula is widely used in Indian medicine to treat diabetes. Methanol extract of stem of plant, reduced the blood glucose levels in Streptozotocin-induced diabetic rats. Catechin was administered to Streptozotocin (60 mg/kg b.w.) induced diabetic male Wistar rats at different doses (5, 10, 20 mg/kg b.w.) for 6 weeks to assess its effect on fasting plasma glucose. Catechin isolated from methanol extracts, the plasma glucose was significantly (p<0.05) reduced and oral administration markedly increased tissue glycogen, and i4C-glucose oxidation without any change in plasma insulin and C-peptide. Catechin restored the altered Glucokinase, glucose-6 Phosphatase, Glycogen Synhase and Glycogen Phosphorylase levels to near normal. GLUT4 mRNA and protein expression were enhanced after Catechin treatment. Catechin possesses hypo-glycemic, Glucose oxidizing and insulin mimetic activities. Ethanolic extract leaf effect as anti fertility on male rats was studied [29, 30, 67, 73-76].

It is defined that Cassia nodosa (Pink shower) and Cassia fistula (Golden shower) both are exhibited maximum plant height and number of leaves when N: P: K was applied at 1g/l in a growing medium comprising of sand: peat moss: humus (1:1:1 v/v) compared to other fertilizer levels [64]. Immunomodulatory effect of fruit of C. fistula and amoxicillin named Amoxy-Cassia studied on humoral immune system of BALB/c mice [14, 27, 39, 40, 46, 47]. Animal immunized with sheep RBC and treated with C. fistula fruit, amoxy Cassia, amoxicillin and saline Number of activated anti-SRBC producing cell in spleen calculated by haemolytic plaque assay. Haemagglutinating Antibody (HA) titer was evaluated on post-immunized day 4, 6, 8, 10. Rising antibody titer was observed in all animals but Amoxy-Cassia treated mice serum had the highest HA titer throughout the experiment suggesting its therapeutic usefulness. Detailed studies of mechanisms of immunomodulation individual are still to be investigated. The plant possess several secondary metabolic compounds specially phenolic compound may be used to discover several bioactive natural products serve as leads in the development of new pharmaceuticals research and positive potential source for contribution in the modern herbal medicine system [7, 59, 60].

Kulkarni A, Govindappa M, Channabasava Chandrappa CP, Ramachandra YL, Prasad SK. Phytochemical analysis of Cassia fistula
and it’s in vitro antimicrobial, antioxidant and anti-inflammatory activities. Advancement in Medicinal Plant Research, 2015; 3(1):8-17.

HOW TO CITE THIS ARTICLE