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ABSTRACT 

Neurodegenerative diseases are ailments that disturb the brain, precisely the neurons. The utmost mutual 

indicators include failures in stability, inhalation, movement, reflexes, motor skills or heartbeat activity. 

These can be prevented using ordinary antioxidants, like vitamins E and C, flavonoids, and polyphenols 

compounds. Antioxidants show a substantial effect in human’s health since they can ameliorate aging by 

fighting free radicals. Precisely Vitamin C can serve as a commanding antioxidant in reducing the 

consequence of oxidative injury triggered by pollutants, anxiety and poor diets amongst others. Thereby 

reducing the long-term risk of neurodegenerative diseases. Currently, neurodegenerative diseases have no 

cure, but they can be managed. This diseases management reduces the symptoms so as to sustain the value 

of life. Management with natural antioxidants such as polyphenols through diet or dietary supplements 

with lots of benefits have become an attractive alternative. The present knowledge on antioxidant in the 

treatment of neurodegenerative disorders and future bearings will be discussed and also assess the value 

for antioxidants as neuroprotective. 

Keywords: Neurodegenerative diseases; vitamins; antioxidants; Neuroprotectives; Alzheimer’s disease; 

Parkinson’s disease. 

 
INTRODUCTION 

As earlier reported, neurodegenerative diseases (NDD) are multifactorial conditions characterized by 

aberrant protein dynamics with defective protein degradation and aggregation, oxidative stress (OS), free 

radical development, impaired cell energy transformation and power house dysfunction [1]. They are 

activated to a limited extent by oxidative and nitrosative stress (OS and NO) and furthermore supported 

by the production of inflammatory cytokine [2-9] and the particular cause of the destructive ROS/RNS and 

the influenced target structures extends between the neuronal pathologies [10]. Since metabolic disarrays 

underlying any single disease can also indirectly give rise to an oxidative microenvironment [11, 12], 

antioxidant and anti-inflammatory drugs have been suggested in the treatment of various 

neurodegenerative conditions [13]. Cell reinforcements are used on a significant scale to acquire as well as 

safeguard ideal wellbeing. While there is no uncertainty that the correct harmony among endogenous and 

exogenous cell antioxidant capacity is fundamental to life, the therapeutic intensity of this agents has 

regularly been misrepresented. The utilization in the treatment of human disease states (most especially 

neurodegenerative diseases, cardiovascular diseases, and cancer) have not been as fruitful as envisioned 

because of intrinsic pharmacokinetic or pharmacodynamic impediments. 

Excess antioxidant ingestion often result in risks to initiate diseases as opposed disease prevention. These 

antioxidants may present certain negative effects if not strictly administered or in combination with other 

medications. Certain vitamins have also been proposed to present pro-oxidant impacts under certain 

conditions and increased doses [14, 15]. 

The possible curative use of antioxidants in free radical-related diseases prompted the theory of their 

utilization to reduce or turn around side effects related to neurodegenerative diseases. Such impact could 

be initiated through inhibition of proinflammatory cytokines activity and the subsequent oxidative damage 
[16-20]. However, studies demonstrated that excess of certain nutrients could set into motion oxidation 

phenomena and, therefore, cell damage [21, 22]. Therefore, it is of importance that before initiating 

antioxidant remedy into standard medicine, noteworthy progress in essential cell biology, pharmacology, 

and clinical bioanalysis are needed. Antioxidant properties of plant-derived foods protect membranes from 

ROS moderated DNA damage which could result in transformation and subsequent diseases. Natural 

antioxidant molecules have been proposed as another form of management/treatment of age-related 
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neurological diseases. Different types of antioxidant molecules and 

antioxidant vitamins may contribute to this prevention. Therefore, the 

significance of antioxidants as neuroprotective will be evaluated in 

some neurodegenerative diseases. There are still several gaps in the 

comprehension of the basis of oxidative damage in neurodegenerative 

disorders; notwithstanding, it is progressively acknowledged that 

numerous diseases share common pathways of oxidative stress-related 

damage, and all things considered, noteworthy advancement will be 

made in the structural design and implementation of viable therapeutic 

systems in the nearest future [23]. 

Antioxidants and Free radicals  

Free radicals are regarded as atoms or molecules comprising one or 

more single electrons. Biologically important radicals are triggered 

atoms or groups of atoms with an odd (unpaired) number of electrons. 

They are continually created during normal physiological metabolism 

in tissues. Under standard conditions, the impacts of ROS/RNS are 

countered by the antioxidant defenses in the body, which contributed to 

the dietary intake of key nutrients (e.g. vitamins and trace minerals). 

Since reactive radicals can be alleviated by the help of antioxidants, 

they have the ability to sustain the integrity of cells (structurally and 

functionally). Therefore, they are vital to the defense system in plants, 

animals as well as humans. 

Oxidative stress and damage 

Although oxidative stress may not be deduced basically by estimating 

only a fraction of the delicate balance that majorly exists between 

the generation of reactive oxygen species and damage limitation by 

the antioxidant system, it is a phenomenon that produces an imbalance 

between reactive oxygen species and antioxidants in a biological 

system. These play a crucial role in pathophysiology of ND [24]. Since 

the brain is rich in polyunsaturated fatty acid, have increased metabolic 

activity and utilizes high oxygen together with moderately restricted 

capacity to battle with oxidative stress, it is prone to oxidative stress 

damage [25]. Waldbaum and Patel (26) confirmed that reactive oxygen 

species act as secondary messengers in many intracellular signaling 

pathways and as mediators of inflammation and oxidative damage. Free 

radicals can assault polyunsaturated unsaturated fatty acid and initiate 

lipid peroxidation thereby making the brain a potential target for the 

onset and pathogenesis of several neurological diseases through oxygen 

radical generation to cause damage [27, 28]. Aside from the fact that ROS 

can adversely affect biological molecules, their reactions with these 

biomolecules also generate additional reactive oxygen species resulting 

in cellular damage.  

The hereditary material of the mitochondrial show vulnerability to a 

limited extent because of its closeness to the site of most uncontrolled 

ROS generation, and in light of the low level of repair occurrence [29-

31].  

Neurodegenerative diseases (NDD) 

The basic highlights of NDDs of the central nervous system (CNS) are 

mitochondria dysfunction and inflammation of the neuron [32]. These 

conditions accumulate ROS and nitrogen species leading to oxidative 

stress which further initiate neuronal damage and subsequent 

inflammation resulting in progressive death of neurons. 

Neurodegeneration, therefore, is the loss of both structure and function 

in neurons. Numerous NDDs have been associated with 

neurodegeneration of the neurons. The neurological results of 

neurodegeneration in patients can have adverse impacts on mental and 

physical functioning. The genesis of most cases of common 

neurodegenerative diseases are unclear [33]. Examples of some NDDs 

include Alzheimer's disease, Parkinson's disease, amyotrophic lateral 

sclerosis, Huntington disease, Friedreich's ataxia, and spinal muscular 

atrophy (figure 1). 

 

 

Figure 1: Schematic overview of common neurodegenerative disorders 

Developmental stages of Neurodegenerative diseases (NDDs) 

This section explains briefly the three development stages of NDDs and 

the symptoms that appear at each stage.  

1. Retrogenesis: The beginning of NDDs is the malfunctioning of 

the cholinergic system of the basal forebrain, which promotes to 

the Entorhinal Cortex and the Hippocampus that are accountable 

for the short and the long-term memory. These modify the brain 

which usually starts 10-20 years in advance and the first visible 

sign of NDDs is forgetfulness or some problems in short-term 

memory [34]. Symptoms may include enhanced memory loss, 

difficulties in acknowledging the family members, in the ability to 

dress up alone and also gait problems. The disease with its 

progression starts affecting the cerebral cortex resulting in the 

form of a further decrease in cognitive power. This stage is linked 

with the clinical diagnosis of NDDs in patients which include 

confusing among familiar places, losing decision power, 

misplacing valuable things, mood and personality changes, 

childish actions in office, increased anxiety, and loss of 

spontaneity and sense of initiatives. Additional atrophy in the 

selected segment of the cerebral cortex results in the form of 

serious problems with language, sensory neurons, and reasoning. 

Patients show a serious attitude towards wandering and agitation 
[35]. 
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2. Cognitive Dysfunction: There is a connection between neuro-

degeneration and toxic proteins. This is accompanied with 

increasing pathological neurofibrillary plaques and tangles in the 

entorhinal cortex (EC), caudate, substantia nigra. These proteins 

play a pathogenic role in the progression of NDDs which leads to 

neurons degeneration and cognitive dysfunction. The Entorhinal 

Cortex (EC) is that part of the brain which gets affected due to 

Alzheimer’s. It has been documented that in order to keep the 

memory alive the communication between the Entorhinal Cortex 

(EC) and the hippocampus is very vital and any difficulty between 

these two regions disrupts the circuit and leads towards memory 

disorder and memory damage. It is concluded that EC is the main 

hub which is more vulnerable to NDDs and these diseases 

propagate with the network of neurons [36]. 

3. Gait Abnormality: Predicting a disturbance in gait activity 

indicates a disturbance in cognitive functions. A term has been 

proposed, “Last-in-First-out” which refers to the phenomenon in 

which the neural circuits mature late in the developmental life 

cycle are more vulnerable to neuro-degeneration and this concept 

helps in early prediction of any kind of dementia 

(neurodegenerative diseases) stated that a strong gait pattern needs 

input not only from the neurological system linked to motor and 

sensory neurons but also from cortical processes for instance to 

judge, plan and a spatial awareness [37]. Disturbances in cognitive 

function have a direct link with higher level gait disturbances and 

it is one of the major symptoms of brain syndrome [38]. 

Mitochondrial dysfunction 

The mitochondrion receives most acknowledgment for its role in 

generating energy for cells in the body and they are known as 

the powerhouse. Incredibly, the mitochondria in our cells have also 

generated a significant amount of attention from researchers the most 

recent decade for its role in numerous other life processes [39-41]. 

Mitochondrial diseases are attributed to either hereditary or mutations 

in mitochondria DNA or nuclear DNA which lead to modified proteins 

or mitochondria RNAs. Issues with mitochondrial function, 

nonetheless, may only influence certain tissues as a result of factors 

occurring amid growth and development yet unknown. 

Notwithstanding when tissue-specific isoforms of mitochondrial 

proteins are put into consideration, it is difficult to clarify the variable 

patterns of influenced organ frameworks in the mitochondrial disease 

syndromes. Because brain and muscle cells require a significant amount 

of energy, they contain high density of mitochondria to support their 

energy requirements. When there is a dysfunction in mitochondria, they 

as well present poor function. Symptoms of mitochondria dysfunction 

include; developmental delay or regression, Seizures, intellectual 

disability, impairment (social, hearing and language), neuropsychiatric 

symptoms, and general weakness [42]. Recent studies suggest that 

mitochondrial dysfunction might be crucial in a wide range of health 

conditions such as Parkinson's disease, bipolar disorder, schizophrenia, 

autism, depression, diabetes, asthma, chronic fatigue syndrome, 

Alzheimer's disease, an assortment of gastrointestinal diseases [43-45]. 

Numerous triggers can lead to mitochondrial dysfunction resulting into 

the symptoms of NDD. Some of the triggers include; genetic variations, 

shortages of essential vitamins and minerals in the diet foreign 

substances, drugs certain bacteria and viruses and stress [46]. Loss of 

function in mitochondria is predisposed to several signs including 

frequent weakness, visual impairment and other commonly 

encountered signs of hardened illnesses. Judging from the structure and 

functions of the powerhouse, depletion of function arises from the 

inability to maintain the transmembrane potential and electrical signals 

of its inner membrane. This then affect the flow of electron and/or 

metabolic reaction/pathways. Resulting in energy reduction energy [47-

50]. 

Mitochondrial dysfunction is characterized by aging, and essentially, of 

all chronic diseases including NDDs [51-55]. One of the outcomes of 

mitochondria dysfunction relating to the electron transport process is 

the creation of ROS, produced as a metabolite of oxidative 

phosphorylation. The fundamental origin of ROS and the related 

reactive nitrogen species (RNS) are mitochondria, and these free 

radicals have the ability to damage biomolecules [56-58]. However, 

antioxidants and superoxide dismutase enzymes (SOD) have the ability 

to inhibit the actions of ROS/RNS [59, 60]. Reactions of the electron 

transport chain can also initiate uncoupling proteins, which could result 

in a leak of protons back across the proton gradient of the inner 

membrane of the mitochondrial into the matrix [61, 62]. This leak results 

in decreased energy generation (figure 2) with excess oxygen 

consumption [60]. 

 

Figure 2: Consequences of Mitochondria dysfunction 

Neurons fundamentally rely on mitochondrial capacities for long-

distance flow of mitochondria to the synapse, isolation, and removal of 

faulty mitochondria from synaptic sites and metabolic demands that 

require high energy flow yields and regularly connected with the 

generation of ROS. Consistent build-up of ROS prompts oxidative 

damage and hindered proteostasis within mitochondrial compartments 
[63-65]. This in turn altered the balance of mitochondria dynamics leading 

to pathogenesis (figure 3). This is the basis of the mechanism by which 

mitochondria dysfunction causes neurodegenerative diseases. 

 

Figure 3: Mechanism of mitochondria dysfunction and in Neurodegenerative 

diseases 

Several studies have pointed out the involvement of mitochondrial 

dysfunction alongside its stressors in NDDs most especially in 

Parkinson’s disease and relative disorders [63, 66-69]. Mitochondrial 

dysfunction is a powerful cause of degeneration compared to oxidative 

damage in a number of Parkinson’s and related disease model [70]. 

Mitochondrial stressors as lately reviewed, cause Parkinson’s disease 

but concluded that more information is essential to effectively 

comprehend the function in Parkinson’s disease pathogenesis [71]. Any 

antioxidant most especially plant-based antioxidant that can target 

mitochondria will be a perfect treatment for neurodegenerative 

diseases. Numerous studies are in progress most especially the 

potentiation of energy production, scavenging reactive oxygen species 

as well as preventing oxidative damage [72]. Also, it was reported that 
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antioxidant treatments can prevent or slow down disease progression in 

experimental animals of NDDs [73]. 

Alzheimer’s Disease  

AD is the commonest recognized NDDs [74]. Successful discovery in 

medicine have extended the average lifespan, resulting in an aging 

population. Because AD and most NDDs are diseases of aging, the 

prevalence is presumed to continue to increase in the future and the 

disorder has been suggested to affect 1 in 85 people in the world by 

2050 (figure 4) [75]. 

 

Figure 4: Time-dependent AD progression 

Alzheimer disorders are distinctly described by progressive cognitive 

degeneration, and pathologically by the presence of senile plaques 

(amyloid-β peptide (Aβ)) and neurofibrillary tangles composed of 

hyperphosphorylated tau (figure 5). Around 5–10% of cases are 

familial, occurring in an early-onset, autosomal-dominant pattern. 

These proteins (amyloid precursor protein, presenilins 1 and 2) are 

related to the familiar cases of AD. [63, 76]. The risk factors of AD 

include environmental and genetic factors. Apolipoprotein E gene has 

been related to the prevalence of non-familial, sporadic Alzheimer’s. 

APOE ε4 allele augments the predisposition for AD disease with less 

than 50% while ε2 and ε3 alleles have been labeled to convene a 

safeguard for the neurodegenerative disorder [77]. Furthermore, research 

based on genome-wide association reported that 19 candidate genes can 

trigger the onset of late on AD [78]. Since researcher has reported that 

mitochondrial dysfunction and oxidative damage occur in the AD brain 

before the onset of Aβ pathology, there is a need to exploit 

neuroprotective antioxidants to keep ROS is check thereby moderating 

oxidative stress and preventing oxidative neuron damage in AD. 

Parkinson’s disease 

PD, ranked second most common NDD succeeding AD, is described 

clinically by progressive rigidity, bradykinesia, and tremor, and by loss 

of pigmented neurons in the substantia nigra in the midbrain and the 

presences of Lewy bodies pathologically [63, 79]. Globally as at 2006, 

over 4 million people of an average age of 60 years are living with PD 

and this incidence is higher in male compared to female [80, 81]. The 

lower effect in females is may be probably due to higher estrogen 

concentration [82]. Several pieces of evidence from post-mortem 

research demonstrated that multiple processes are associated with 

apoptosis or necrosis, including oxidative stress, mitochondrial 

dysfunction, neuroinflammation, excitotoxicity and accumulation of 

misfolded proteins due to proteasomal and autophagic disorders [83]. 

Huntington’s disease or Huntington’s chorea (HD) 

It is a progressive neurodegenerative (autosomal dominant) disease 

located in the basal ganglia characterized by choreiform movement, 

dystonia, dementia, psychiatric problem, and dilation of the ventricle 

(decrease in brain size). This disease is linked with the unstable 

expansion of a trinucleotide cytosine, adenine, guanine (CAG) repeats 

in the Huntington gene [84, 85]. Glutamine (Q) encoded from this CAG 

repeat is expressed in the HTT protein as a Poly-Q stretch near its N-

terminal [86]. Ordinarily, healthy individuals accept less than 26 CAG 

repeats in their HTT gene resulting in normal HTT functioning in 

vesicle trafficking and endocytosis. However, individuals with more 

than 36 repeats express mutant HTT (mHTT) protein are attributed to 

genetic changes such as mutation [87]. These misfolded and aberrant 

mHTT protein are not able to carry out its normal synaptic and pro-

survival roles [88]. The unique trait of the disease includes cleavage and 

aggregation formation of misfolded mHTT in the nucleus of cell, 

cytoplasm, and neurites [84, 89]. Interestingly, despite the established 

connection of the function of ROS and oxidative stress in Huntington 

disease, trials attempting to treat the disease using classic antioxidants 

have largely been ineffective [90]. 

Amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease 

ALS also was known as motor neuron disease is characterized by 

progressive loss of motor neurons in the anterior horn of the spinal cord 
[91]. ALS is classified as sporadic or familial depending on the 

involvement of inherited genetic element. Since the onset of sporadic 

ALS is yet a mystery, isolation of genes responsible for this disease and 

other factors remain elusive [92]. In familial ALS, about 20% of the 

cases resulted from mutations in SOD1 [93]. The functions of SOD1 are 

diverse and include scavenging excessive superoxide radical thereby 

modulating cellular respiration, energy metabolism, and 

posttranslational modification [94]. ALS disorders can be deadly when 

delayed leads to wasting of respiratory and motor neurons [95].  

Antioxidant production in plant 

The main energy production and sites of ROS generated within plant 

cells are mitochondria and chloroplasts. These organelles help to 

maintain a defined balance between energy functions and control of the 

production of ROS. Peroxisomes are also considered as the other 

crucial site of ROS production such as hydrogen peroxide (H2O2), 

superoxide (O2
● -) and nitric oxide(NO●) in plant cells. This organelle 

contains basic enzymatic constituents like catalase and flavin oxidizes 
[96]. The ROS generated in plant cells (photosystem I, II, peroxisome 

and mitochondria (Electron transport chain)) in form of electron leaks 

and react with O2 yielding O2
● - and this is converted to hydroxyl radical 

and finally to hydrogen peroxide [97, 98]. Also in a similar fashion, 

reactive nitrogen species (nitric acid radical and peroxynitrite) are also 

formed in all these organelles mentioned above [99]. The final example 

of free radical (reactive sulfur species) is derived from sulfur-

containing amino acid (thiols) by reaction with reactive oxygen species 
[100]. Since free radicals function as a signaling molecule, they are said 

to be genetically initiated [101, 102]. However, accumulation of ROS are 

also sometimes harmful to biomolecules. Plant has some devised steps 

to reduce/avoid the effect of the aforementioned free radicals through 

complex enzymatic and non-enzymatic defense systems. The four 

major enzymatic systems used to reduce the radicals’ effect are SOD, 

catalase (CAT), glutathione peroxidase (GPx), and glutathione 

reductase (GR) while the low and high molecular weight 

antioxidants/metabolites are the non-enzymatic systems (figure 5) [103]. 

The proposed reasons for the accumulation of these low and high 

molecular weight antioxidants can be explained in two ways: (1) the 

hereditary composition of plants grants them with a natural capacity to 

produce several types of phytochemicals to play out their typical 

physiological roles and additionally shield them from microbial 

pathogens and herbivorous animals. (2) The production of reductant 

phytochemicals could be the regular inclination of plants to react to 

ecological pressure and other adverse conditions [104].  
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Figure 5: Antioxidant machinery in plant 

Classification and mode of action of Antioxidants 

Antioxidant can be classified as the first, second and third line of 

defense respectively (figure 5 and 6). Superoxide dismutase, 

glutathione reductase, glutathione peroxidase, catalase and some 

minerals including selenium, copper, manganese and zinc are regarded 

as the first line of defense. Superoxide dismutase react by quenching 

superoxide, glutathione reductase act as a scavenger for hydroxyl 

radicals, singlet oxygen, and numerous electrophiles (convert GSSG to 

2GSH), glutathione peroxidase (selenium-containing enzyme) 

catalyzes the reduction of hydrogen peroxide and lipid hydroperoxides 

to H2O using glutathione as substrate, catalase act by converting 

hydrogen peroxide to water. Alpha-tocopherol and selenium are 

involved in the scavenging of peroxides from the cell membrane and 

cytosol respectively. Copper act through the cytosolic superoxide 

dismutase. Zinc is essential for different functions in the body and thus 

exert its role through zinc-containing enzymes such as alcohol 

dehydrogenase, cytosolic superoxide dismutase, alkaline phosphatase, 

and carbonic anhydrase. The second line defense is Glutathione, 

vitamin E, Vitamin C, uric acid, albumin, carotenoids, flavonoids. 

Beta-carotene is an excellent scavenger of singlet oxygen. Vit C act 

synergistically with Vit E to donate hydrogen atoms and also interacts 

directly with radicals. Glutathione scavenges free radicals and various 

lipid hydroperoxides and also detoxify many pollutants such as ozone, 

NO2 and free radicals in the respiratory tract. Vitamin E scavenges 

peroxyl radicals in lipid peroxidation which is responsible for 

protecting polyunsaturated fatty acids in the cell membrane. Phenolic 

compounds like flavonoids present in plants inhibit lipid peroxidation 

and lipoxygenases. The third line antioxidants are a complex group of 

enzymes for repair of damaged biomolecules such as protein, DNA and 

lipids. These enzymes (proteases, lipases, transferase, DNA repair 

enzymes etc) repair the damage and reconstitute damaged cell 

membrane.  

 

Figure 6: The antioxidant mechanism of the human cell. 

Endogenous antioxidant defenses (enzymes and non-enzymatic low 

molecular weight molecules). Important antioxidants are majorly 

ingested through the diet such as plants.  

The significance of Plant-based antioxidants  

Antioxidants derived from plant are natural products with radical-

scavenging capacity or reducing properties. Because of their powerful 

preventive and therapeutic activities, they attract attention from both 

pharmacologists and physicians. The maintenance of redox 

homeostasis is crucial in health and in the prevention of diseases. 

Oxidative stress is generated by unbalance between reactive 

oxygen/nitrogen species and antioxidants. Excess of ROS leads to 

degradation of biomolecules could lead to cells damage oxidatively and 

in a consequence to overexpression of oncogenes, mutagens formation, 

induction of atherogenic activity, or inflammation [105]. Diseases such 

as cancer, diabetes, disorders in the immune system and most especially 

NDDs are majorly initiated by several condition such as oxidative 

stress. Sources rich in antioxidants include fruits and vegetables from 

plant. These plant-based antioxidants have been reported to donate 

protons thereby reducing reactive oxygen species and preventing 

oxidative stress in human health. Antioxidant have several mode of 

actions. Example of some of these are scavenging, termination of lipid 

peroxidation, or metals chelation. Although the properties, including 

structural and functional properties of antioxidants have been 

elucidated, some important aspects still require careful consideration 

and additional investigations. More studies of the therapeutic roles of 

the antioxidant in the prevention or maintenance of cellular integrities 

are encouraged alongside with the exact concentrations and treatment 

efficacies. Moreover, the biological potentials of some natural 

compounds are still yet to be uncovered. Commonly known 

antioxidants, as well as those newly discovered, are promising for their 

vital role in the use to prevent and/or in the treatment of 

neurodegenerative disorders. 66% of the world's plant species have 

therapeutic significance, and practically these have phenomenal 

antioxidant benefits [106]. Antioxidants derived from plant are broadly 

distributed in foods and more specifically, medicinal plants. Flavonoids 

and provitamins such as vit A, exerts various biological effects on 

biological system. These biological effects are anti-inflammatory, anti-

aging, anti-atherosclerosis, anticancer and neuroprotective. Successful 

extraction and subsequent bioactive isolation followed by proper 

evaluation of antioxidants from food and medicinal plants are crucial 

to investigate the potential of antioxidant sources and advance the 

application in functional foods, pharmaceuticals, and food additives. 

Exogenous antioxidants have the ability to prevent the damage induced 

through oxidative stress by preventing the activation of oxidative 

reactions, acting as scavengers, quenchers of singlet oxygen and 

reducing agents [107]. Antioxidants essentially slow down the oxidation 

of biomolecules even at a small concentration. The major sources of 

these antioxidants from plant and foods are mainly vegetables, herbs, 

spices and mushrooms [108-119]. In addition, the industries processing 

agricultural by-products are equally good sources of natural 

antioxidants [120]. These natural antioxidants from plant materials are 

mainly polyphenols (phenolic acids, flavonoids, anthocyanins, lignans, 

and stilbenes), carotenoids (xanthophylls and carotenes) and vitamins 

(vitamin E and C) [107, 121]. Generally, these natural antioxidants, 

especially polyphenols and pro-vitamin A, exhibit a wide range of 

biological effects, such as anti-inflammatory, antibacterial, antiviral, 

anti-aging, and anticancer [122-131]. Alam et al (132) reported that 

approximately 19 in vitro and 10 in vivo methods are used for the 

assessment and evaluation of antioxidant activity of plant samples. 

Extracts from plants have showed potent antioxidant activity in 

numerous in vitro assays. This can be attributed to the plant’s innate 

ability to synthesize non-enzymatic antioxidants such as ascorbic acid 

and glutathione, as well as secondary metabolites such as phenolic 

compounds [104]. 

The aforementioned plant antioxidants have been exploited as 

therapeutics for human diseases most especially neurodegenerative 

diseases. Adewale et al (133) evaluated the in vitro antioxidant 

potentials of Solanum macrocarpon leaves in rat brain and concluded 
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that the leave extract possesses a powerful antioxidant activity and can 

offer good protection against oxidative damage to body cells, especially 

liver and brain. The protective effect of Crassocephalum rubens leaves 

has also been deduced to offer protection on some body tissues [134]. 

The HPLC-DAD fingerprinting analysis, activity of Blighia sapida and 

its inhibition of cholinergic enzymes have been reported to play a huge 

role in the treatment of Alzheimer’s Disease [135]. Serrano et al (136) 

also discussed the biological effect of tannins as a neuroprotective 

compound. curcumin has also been studied as a neuroprotective against 

the MPTP-induced neurodegeneration [137]. Other studies have also 

confirmed the neuroprotective effect of curcumin [18, 138-148]. Ayurveda, 

a traditional medicine in India and in several other south Asian 

countries is also another neuroprotective potent plant in the treatment 

of neurodegenerative diseases [149-155].  

In the system of therapeutic medicinal herbs, several medicinal plants 

have shown promising therapeutic effects in 

Neuropsychopharmacology: Allium sativum, Bacopa monnierae, 

Centella asiatica, Celastrus paniculatus, Nicotiana tabaccum, 

Withania somnifera, Ricinus communis, Salvia officinalis, Acorus 

calmus, Curcuma longa, Terminalia chebula, Crocus sativus, Enhydra 

fluctuans, Valeriana wallichii, Glycyrrhiza glabra etc. [156]. Other 

significant neuroprotective pants exploited for their potent treatment 

against NDDs such as AD, PD, multiple sclerosis, and amyotrophic 

lateral sclerosis include Nardostachys jatamansi [157, 158], Semecarpus 

anacardium [159], Corydalis spp, Ruta graveolens, Lavandula 

angustifolia, Rosmarinus officinalis, Petroselinum 

crispum and Mentha spicata [160]. The major effects of antioxidant to 

scavenge radical, inhibit cell death and or serve as neuroprotective 

through specialized mechanisms (figure 7). 

 

Figure 7: Role of Antioxidant in Neurodegenerative Disease 

CONCLUSION 

Knowledge of NDDs has advanced progressively in the last few 

decades, and the field holds incredible promise for further 

understanding and the cure for these diverse diseases. Since the 

treatments of these diseases with synthetic compounds in clinical trials 

have proven difficult due to their toxicity and ability to cause other 

diseases such as cancer, treatments with natural antioxidants such as 

polyphenols through diet or dietary supplements have become an 

attractive alternative against oxidative damage of neuronal cells that 

play a vital role in the origin of NDD. Antioxidants in plants have been 

reported to reduce the risk of several major diseases including 

cardiovascular diseases, cancers as well as NDDs. Also, Restorative 

methodologies that will address both the oxidative and inflammatory 

pathways in the neuropathogenesis of age-related neurodegeneration 

are earnestly required as well as the improvements in targeting and drug 

delivery such as Nano-particles will powerfully enhance the 

bioavailability and assist in the development of therapeutics effectively. 

More mitochondria-targeting antioxidants should as well be exploited 

as therapeutic agents in treatments for neurodegenerative disease. Also, 

the consumption of plant-based foods may reduce the risk for some of 

the diseases caused by neuronal dysfunction. On a whole, more insight 

is needed for potential future therapeutic strategies of NDD. 
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